
Iterative Statements
David Greenstein


Monta Vista High School



Iteration
• Repeating the same code 

fragment several times is called 
iterating.


• Iterating allows for repetitive 
tasks to be done efficiently, and 
computers are perfect for the 
task.


• Most programming languages 
offer control statements that 
iterate based on:


a condition to be satisfied (Java while)

a set number of repetitions (Java for)

Scratch loop

Python loop

1 of 16



Put !condition into 
the while

Java while Statement
  while ( condition ) 
  { 
     statement1; 
     statement2; 
     ... 
     statementN; 
  }

condition is any 
logical expression, 

as in if

The body of the loop

  while ( true ) 
  { 
     ... 
     if (condition) break; 
     ... 
  }

Don’t loop using true

2 of 16



Java while
• Example:
  // Returns the smallest n 
  //   such that 2^n >= x 
  public static int intLog2 (int x) 
  { 
     int n = 0,  p = 1; 

     while ( p < x ) 
     { 
         p *= 2; 
         n++; 
     } 
     return n; 
  }

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

• Every while statement needs:

an initialization statement

a condition to test

a change within the block that affects 
the condition

3 of 16



Loop Invariant

int x = 5, n = 0,  p = 1; 

     while (p < x) 
     { 
         p *= 2; 
         n++; 
     } 
    ...

Loop invariant: 
 p = 2n

• A loop invariant is an assertion that is true before the 
loop and at the end of each iteration.


• Invariants help us reason about the code.

4 of 16



Java for Statement

  for ( initialization; condition; change) 
  { 
     statement1; 
     statement2; 
     ... 
     statementN; 
  }

• for is a shorthand that combines in one statement 
initialization, condition, and change:

5 of 16



Java for
• Example:
  // Returns the smallest n 
  //   such that 2^n >= x 
  public static int intLog2 (int x) 
  { 
     int n = 0,  p; 

     for (p = 1; p < x; p *= 2 ) 
     { 
        n++; 
     } 
     return n; 
  }

• Every for statement explicitly 
states:


an initialization statement

a condition to test

a change that affects the condition

Initialization

Statements 

Flowchart

Test 
condition

True

False

Change

6 of 16



Java for Statement
  
 char[] chars = {‘a’, ‘b’, ‘c’, ‘d’};  
 String str = “”; 
 for ( int a = 0; a < chars.length; a++) 
    str += chars[a]; 

• Regular for loop

  
 char[] chars = {‘a’, ‘b’, ‘c’, ‘d’};  
 String str = “”; 
 int a = 0; 
 for ( ; a < chars.length ; ) { 
    str += chars[a]; 
    a++; 
 }

• Irregular for loop - compiles and executes, but ….

Use while

loop instead

7 of 16



Java do-while
• Example:
  // Returns 2 to the n power 
  // Precondition: n > 0 
 public static int intPow2 (int n) 
  { 
    int  cnt = 1, p = 1; 
    do { 
         p *= 2; 
         cnt++; 
     } while (cnt <= n); 
     return p; 
  }

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False• Every do-while statement needs:

an initialization statement

a change within the block that affects 
the condition

a condition to test

8 of 16



Java while vs do-while

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

while loop flow do-while loop flow
9 of 16



• do-while’s can be avoided by using a while statement
public static int intPow2 (int n) 
  { 
    int  cnt = 1, p = 1; 
    do { 
         p *= 2; 
         cnt++; 
     } while (cnt <= n); 
     return p; 
  }

public static int intPow2 (int n) 
  { 
    int  cnt = 0, p = 1; 
    while (cnt <= n) { 
         p *= 2; 
         cnt++; 
     } 
     return p; 
  }

while

do-while

Java while vs do-while
10 of 16



break in Loops
• break in a loop instructs the program to immediately quit 

the current iteration and go to the first statement following 
the loop. Use sparingly!


• return in a loop instructs the program to immediately quit 
the current method and return to the calling method.


• A break or return must be inside an if or an else, 
otherwise the code after it in the body of the loop will be 
unreachable.

11 of 16



break in Loops (cont)
• Examples:

  int d = n - 1; 

  while (d  > 1) 
  { 
        if (n % d == 0) 
            break; 
        d--; 
  } 

  if ( d > 1 )   // if found a divisor 
         ...

  int d = n - 1; 

  while (d  > 1 && n % d != 0) 
            d--; 

  if ( d > 1 )   // if found a divisor 
         ...

Better without break

12 of 16



return in Loops
• Recommended to use return for “break-like” result

public int search(String[ ] list, String word) 
{ 
     for (int k = 0;  k < list.length;  k++) 
     { 
         if (list[k].equals(word)) 
             return k; 
     } 

     return -1; 
}

13 of 16



Nested Loops
• A loop within a loop is called nested.
   // Draw a 5 by 3 grid: 

   for (int x = 0;  x < 50;  x += 10) 
   { 
       for (int y = 0;  y < 30;  y += 10) 
       { 
           g.fillRect(x, y, 8, 8); 
       } 
   } 

Result:

14 of 16



break Inside Nested Loops
• Danger!!!

 for (int r = 0;  r < m.length;  r++) 
 { 
     for (int c = 0;  c < m[0].length;  c++) 
     { 
         if (m [ r ][ c ] == 'X' ) 
             break; 
     } 
 } 
 ...

Breaks out of the inner loop but 
continues with the outer loop

15 of 16



Triangular Nested Loops
• The inner loop variable starts at the outer loops next value.

 for (int  i = 0;  i < a.length;  i++) 
 { 
   for (int  j = i + 1;  j < a.length;  j++) 
   { 
     if (a [ i ].equals(a [ j ]) 
       System.out.println ("Duplicate " + a [ j ] ); 
   } 
 }

16 of 16



Questions?


