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Iteration
• Repeating the same code 

fragment several times is called 
iterating.


• Iterating allows for repetitive 
tasks to be done efficiently, and 
computers are perfect for the 
task.


• Most programming languages 
offer control statements that 
iterate based on:


a condition to be satisfied (Java while)

a set number of repetitions (Java for)

Scratch loop

Python loop
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Put !condition into 
the while

Java while Statement
  while ( condition ) 
  { 
     statement1; 
     statement2; 
     ... 
     statementN; 
  }

condition is any 
logical expression, 

as in if

The body of the loop

  while ( true ) 
  { 
     ... 
     if (condition) break; 
     ... 
  }

Don’t loop using true
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Java while
• Example:
  // Returns the smallest n 
  //   such that 2^n >= x 
  public static int intLog2 (int x) 
  { 
     int n = 0,  p = 1; 

     while ( p < x ) 
     { 
         p *= 2; 
         n++; 
     } 
     return n; 
  }

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

• Every while statement needs:

an initialization statement

a condition to test

a change within the block that affects 
the condition
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Loop Invariant

int x = 5, n = 0,  p = 1; 

     while (p < x) 
     { 
         p *= 2; 
         n++; 
     } 
    ...

Loop invariant: 
 p = 2n

• A loop invariant is an assertion that is true before the 
loop and at the end of each iteration.


• Invariants help us reason about the code.
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Java for Statement

  for ( initialization; condition; change) 
  { 
     statement1; 
     statement2; 
     ... 
     statementN; 
  }

• for is a shorthand that combines in one statement 
initialization, condition, and change:
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Java for
• Example:
  // Returns the smallest n 
  //   such that 2^n >= x 
  public static int intLog2 (int x) 
  { 
     int n = 0,  p; 

     for (p = 1; p < x; p *= 2 ) 
     { 
        n++; 
     } 
     return n; 
  }

• Every for statement explicitly 
states:


an initialization statement

a condition to test

a change that affects the condition

Initialization

Statements 

Flowchart

Test 
condition

True

False

Change
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Java for Statement
  
 char[] chars = {‘a’, ‘b’, ‘c’, ‘d’};  
 String str = “”; 
 for ( int a = 0; a < chars.length; a++) 
    str += chars[a]; 

• Regular for loop

  
 char[] chars = {‘a’, ‘b’, ‘c’, ‘d’};  
 String str = “”; 
 int a = 0; 
 for ( ; a < chars.length ; ) { 
    str += chars[a]; 
    a++; 
 }

• Irregular for loop - compiles and executes, but ….

Use while

loop instead

7 of 16



Java do-while
• Example:
  // Returns 2 to the n power 
  // Precondition: n > 0 
 public static int intPow2 (int n) 
  { 
    int  cnt = 1, p = 1; 
    do { 
         p *= 2; 
         cnt++; 
     } while (cnt <= n); 
     return p; 
  }

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False• Every do-while statement needs:

an initialization statement

a change within the block that affects 
the condition

a condition to test
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Java while vs do-while

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

Initialization

Statements 
w/change

Flowchart

Test 
condition

True

False

while loop flow do-while loop flow
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• do-while’s can be avoided by using a while statement
public static int intPow2 (int n) 
  { 
    int  cnt = 1, p = 1; 
    do { 
         p *= 2; 
         cnt++; 
     } while (cnt <= n); 
     return p; 
  }

public static int intPow2 (int n) 
  { 
    int  cnt = 0, p = 1; 
    while (cnt <= n) { 
         p *= 2; 
         cnt++; 
     } 
     return p; 
  }

while

do-while

Java while vs do-while
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break in Loops
• break in a loop instructs the program to immediately quit 

the current iteration and go to the first statement following 
the loop. Use sparingly!


• return in a loop instructs the program to immediately quit 
the current method and return to the calling method.


• A break or return must be inside an if or an else, 
otherwise the code after it in the body of the loop will be 
unreachable.
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break in Loops (cont)
• Examples:

  int d = n - 1; 

  while (d  > 1) 
  { 
        if (n % d == 0) 
            break; 
        d--; 
  } 

  if ( d > 1 )   // if found a divisor 
         ...

  int d = n - 1; 

  while (d  > 1 && n % d != 0) 
            d--; 

  if ( d > 1 )   // if found a divisor 
         ...

Better without break
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return in Loops
• Recommended to use return for “break-like” result

public int search(String[ ] list, String word) 
{ 
     for (int k = 0;  k < list.length;  k++) 
     { 
         if (list[k].equals(word)) 
             return k; 
     } 

     return -1; 
}
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Nested Loops
• A loop within a loop is called nested.
   // Draw a 5 by 3 grid: 

   for (int x = 0;  x < 50;  x += 10) 
   { 
       for (int y = 0;  y < 30;  y += 10) 
       { 
           g.fillRect(x, y, 8, 8); 
       } 
   } 

Result:
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break Inside Nested Loops
• Danger!!!

 for (int r = 0;  r < m.length;  r++) 
 { 
     for (int c = 0;  c < m[0].length;  c++) 
     { 
         if (m [ r ][ c ] == 'X' ) 
             break; 
     } 
 } 
 ...

Breaks out of the inner loop but 
continues with the outer loop
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Triangular Nested Loops
• The inner loop variable starts at the outer loops next value.

 for (int  i = 0;  i < a.length;  i++) 
 { 
   for (int  j = i + 1;  j < a.length;  j++) 
   { 
     if (a [ i ].equals(a [ j ]) 
       System.out.println ("Duplicate " + a [ j ] ); 
   } 
 }
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Questions?


